
-.---

LARSTechnical Report 012477

Crop Iden-e~'~ca-e~onand Area
Esi:~mai:~onower La.--e Geollraphllc

Areas Us~nllLAIIDSA' ItSSDna
Marvin E.Bauer and Staff

Laboratory for Applications of Remote Sensing
Purdue Unillersity

W Lafayette, Indiana 47906

January 1977
Final Report for the Period of

March 1975to September 1976

Prepared for .
GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland 20771



LARS Technical Report 012477

CROP IDENTIFICATION AND AREA ESTIr1ATION
OVER LARGE GEOGRAPHIC AREAS USING

LANDSAT MSS DATA

Marvin E. Bauer and Staff
Laboratory for Applications of Remote Sensing

Purdue University
West Lafayette, Indiana 47906'

Final Report on Contract NASS-20793
Prepared For

National Aeronautics and Space Administration
Goddard Space Flight Center

Greenbelt, Maryland 20771



• TECHNICAL REPORT STANDARD TITLE PAGE
2. Go.•••rnm.nt Acco•• IOII He. 3. R.cipio",'. Cotolo, Ho.

10. Work Unit No.

CROP IDENTIFICATION AND AREA ESTIMATION
OVER LARGE GEOGRAPHIC AREAS USING

7. Aut'-(.)
Dr. Marvin E. Bauer and Staff

9. ,.,t.fIlIl"l ~ •• nl•• tl••••••••• .4 ,y••••
Laboratory for Applications of Remote Sensing
Purdue University
1220 Potter Drive
W e I ana 47906
1 • s,on • .,llIt A••••c, No•• 0114 A••••••

National Aeronautics and Space Administration
Goddard Space Flight Center
Gr~~n8~lilc~~61~~gne~~1~~-Technica1 Monitor)
1 • Suppl._te" Note,

6. Po,'o'lIli"lI 0"0"110'1011 Cod.

8. Por'ormill, Orlollllo'ion Roport Ho.
I

11. Controct or Grant tlo.
NAS5-20793

13. Typo a' Roport and Period Co.••er.d
Type III - Final
Marc~ 2.5,.1975 -

• A"'MetThis report describes the results of a study involving the use
of computer-aided analysis techniques applied to Landsat MSS data for
identification and area estimation of winter wheat in Kansas and
corn and soybeans in Indiana. Key elements of the approach included
use of aerial photography for classifier training, stratification of
Landsat data and extension of training statistics to areas without
training data, and classification of a systematic sample of pixels
from each county. Major results and conclusions are that (1) Landsat '
data was adequate to accurately identify winter wheat in Kansas, but
not corn and soybeans in Indiana; (2) computer-aided analysis tech-
niques can be effectively used to extract crop identification infor-
mation from Landsat MSS data, and (3) systematic sampling of entire
counties made possible by computer classification methods resulted
in very precise area estimates at county as well as district and
state levels.

17. Koy .,tIe (S.'octecl '" "thor(s» 11. Dlsklbutlo •• State••ont

Crop Inventory, Crop Identificatio ,
Crop Area Estimation, Computer-
Aided Analysis Techniques, Landsat
MSS Data Analysis

19. Security CI••• I'. (ef this report) 20. Security CI••• I'. (of thl, po.o) 21. No. of Pall.' 22. P,ico

Unclassified Unclassified.

i

160



ACKNOWLEDGEMENTS

The principal investigator would like to thank the many
individuals at the Laboratory for Applications of Remote Sensing
who were directly involved in the successful completion of this
project. Particular recognition should go to Mr. Carl Walker
and Mrs. Jeanne Etheridge who, as project coordinators, kept
the many different aspects of the investigation functioning
together and on schedule. Special appreciation is due to Mrs.
Marilyn Hixson and Mrs. Barbara Davis who spent many extra hours
preparing and compiling the final report. Special acknowledg-
ment is also given to Mr. Larry Biehl for acquiring the aerial
photography; Mr. John Ahlrichs for digitizing map and Landsat
coordinates; Mr. Emilio Horvath, Mrs. Jeanne Etheridge, Mrs.
Marilyn Hixson, Mr. Donald Crecelius, and Mr. Ali Virasteh for
aerial photography interpretation and Landsat data analysis;
Mrs. Marilyn Hixson and Mrs. Barbara Davis for statistical
design and analyses; and to Mrs. Beverly Carpenter for typing
the final report.

Special thanks is also extended to Mr. Earl Park and
Mr. M.E. Johnson, State Statisticians, of Indiana and Kansas
respectively, for supplying information describing the crop
survey procedures used in their states. Finally, I would like
to gratefully acknowledge the support by the NASA/Goddard Space
Flight Center of this investigation. The helpfulness of the
technical monitor Mr. Richard Stonesifer was greatly appreciated.

ii



PREFACE

This investigation ~pplied to Landsat data the advances
and developments of the past decade in analyzing multispectral
remote sensing measurements for crop identification and area
estimation. Landsat MSS data for Kansas and Indiana were
classified using computer-aided analysis techniques to identify
and determine the areal extent and distribution of the major
crops in the two state test area. It was conclusively demon-
strated that Landsat data analyzed by computer methods could
be effectively used to produce accurate estimates having
extremely small sampling error. Recommendations are made for
increasing the spectral, spatial and temporal resolution of
data acquired by future satellite systems, along with pre-
processing to geometrically correct and register data sets.
It is recommended that attention be given to developing more
effective methods of scene stratification and obtaining crop
yield information from Landsat data.

The rationale and background of the investigation are
described in Section 1.0; the objectives follow in Section 2.0.
In Sections 3.0 and 4.0 the test areas and experimental
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approach and procedures are described. The results of the
investigation are presented in Sections 5.0 and 6.0. The
significant results and conclusions of the investigation are
given in Section 7.0, followed by the recommendations in
Section 8.0.
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1.0 INTRODUCTION

As our grain reserves become depleted and world popula-
tion and demand for food increase, the need to improve the
quality of world crop production information becomes ever
more critical. Accurate and timely crop production informa-
tion has been identified at the World Food Conference held
in Rome in 1974 [25] and more recently in a National Academy
of Science study [20] as a critical part of the solution of
the food problem.

During the past decade considerable evidence has devel-
oped that multispectral remote sensing from aerospace plat-
forms can provide quantitative data which can be effectively
used to identify major crop species and determine their
areal extent. Remote sensing techniques may prove to be a
more accurate, precise, timely, and/or cost effective method
of acquiring crop production information than conventional
surveys carried out on the ground. The information gained
from this investigation should provide additional data on
which to determine the utility of remote sensing.
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1.1 Value of Crop Production Information

Most countries forecast and estimate their crop produc-
tion, but relatively few have reliable methods for gathering
the necessary data. The benefits of improved crop informa-
tion are: (1) accurate estimates result in price stability;
(2) timely and accurate forecasts of production allow gov-
ernments to plan domestic and foreign policies and actions;
and (3) accurate forecasts enable optimal utilization of
storage, transportation, and processing facilities. Con-
versely, the socioeconomic costs of not having accurate and
timely information available are substantial.

The economic value of increased crop forecast accuracy
in the United States was first quantified by Hayami and Peter-
son [12]. They estimated from their model that a reduction
in forecast error for wheat from 3.2% to 2.1% would have
annual net social benefits of 70 million dollars at 1968
prices--a figure which would be approximately doubled at
1974-1976 prices. On a world basis the value of improved
forecast would be substantially greater. Comparable bene-
fits would be gained by improving the accuracy of estimates
for other major crops.

In addition, more frequent information, such as might
be provided with remote sensing techniques, would increase
the social benefits even without improvements in the crop
estimate error [10].
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1.2 Conventional Crop Survey Methods

Information gathering is as old as civilization. Census
taking by the Egyptian Pharaohs and Roman Emperors are good
examples. However, the application of scientific statistical
methods to gathering agricultural statistics is only about
a hundred years old. But, in spite of many technological
advances in the methods used to survey crops, many countries
still do not have adequate systems to gather data needed to
support satisfactory decision making about food and nutri-
tion.

The system developed in the United States is regarded
as being one of the most comprehensive and accurate. In
this country the Statistical Reporting Service of the
Department of Agriculture (USDA/SRS) has responsibility for
collecting and reporting current data on U.s. agriculture.
The present program of crop and livestock estimation annu-
ally includes over 500 national reports, plus numerous
reports issued by individual states. Reports are made for
more than 120 crop commodities (including field and seed
crops, vegetables, fruits, and nuts) and provide estimates
of acreages farmers intend to plant; acreages actually
planted and harvested; yield, production and crop disposi-
tion; as well as periodic indications of remaining stocks
for important crops. Monthly forecasts of production are
prepared for major crops throughout the growing season.
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t Nearly all surveys conducted by SRS are probability
surveys based on relatively small samples. Since 1965 a
national general purpose survey including 17,000 area seg-
ments which are enumerated during May and June each year
has been used. The sampling units or area segments are
typically about 2.6 square kilometers (about one square
mile) in size. This sample is stratified with states and
areas within states serving as strata. Crop reporting dis-
tricts(CRD), groupings of contiguous counties having sim-
ilar agricultural practices, are generally the intrastate
strata. Sample selection within strata follows a system-
atic approach using a geographically arranged listing of
the sampling frame. Trained enumerators visit each seg-
ment and interview each farm operator to obtain data on
crop acreages, livestock production, production costs,
and prices received. About 20% of the questionnaire con-
cerns crop acreage information. Additional information
describing the SRS sampling and estimation procedures may
be found in references [23] and [7].

The current SRS probability surveys provide indepen-
dent estimates with known measures of precision (sampling
errors). Typical sampling errors for several major crops
are shown in Table 1. It should be noted here the SRS
surveys are designed to produce accurate, precise estimates
at the national level. At the state level where there are
generally 300-400 sampling units, the sampling error is

4



Table 1. Coefficients of variation from June Enumerative
and 0kjective Yield Surveys in the United States,
1975.

Coefficient of Variation C %)

Crop Acres Planted Yield Production

Winter Wheat 1.5 1.0 2.0

Corn 1.1 0.9 1.7

Soybeans 3.5 1.0 2.1

Cotton 3.5 1.0 3.7

aFrom Caudill [7].
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greater; coefficients of variation are typically 4-6%.
Estimates for counties are not obtained from the June

enumerative survey since there are too few segments per
county to be reliable. Rather, the estimate of the total
acreage of, for example, wheat in the state is obtained
and then subdivided among counties. The county allocations
are based on a mail survey which may include 50-100 respon-
dents per county and/or the last agricultural census. Var-
iance estimates are not calculated by the SRS for county
estimates, but the coefficients of variation are believed to
be on the order of 10% or more.

1.3 Development of Remote Sensing Technology for Crop Surveys

To understand the approach used and results from this
investigation it will be helpful to briefly review the devel-
opment of remote sensing technology related to crop surveys.
This historical perspective will indicate the progress which
has been made and the contribution of this investigation.

Remote sensing from satellites is particularly appro-
priate for crop surveys because of the capability to obtain
repetitive coverage of wide areas. The physical basis for
remote sensing, data acquisition platforms and sensors, and
data analysis techniques are described by Bauer [3] in a
review of the potential role of remote sensing in determining
the distribution and yield of crops.
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Remote sensing as it is known today is an outgrowth of
aerial photography. Although the use of aerial photography
has been developing for more than a hundred years, remote
sensing has been evolving and expanding most rapidly since
1960 as new sensors and interpretation techniques became
available.

In 1964, multispectral photography was collected for
the first time over agricultural fields, and the potential
of the multispectral approach to crop identification was
recognized [13]. After this approach was further defined, a
crop classification was made from multispectral scanner data
in 1967, using pattern recognition methods implemented on a
digital computer [17].

One of the first investigations using satellite-acquired
imagery to identify crops was performed by Anuta and
MacDonald [ 2]. Apo11o-9 multispectral photography was digi-
tized and analyzed using computer-implemented pattern recog-
nition techniques. Agricultural land in the Imperial Valley
of California was accurately classified into several individ-
ual crops, soil, and water.

The Corn Blight Watch Experiment, conducted in 1971 by
NASA, USDA, Purdue University, and the University of Michigan
in seven Corn Belt states, provided a prototype remote sens-
ing system [1~. It successfully integrated techniques of
sampling, data acquisition, storage, retrieval, processing,
analysis, and information dissemination in a quasi-operational
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system environment. The results showed that remote sensing
could be used to quantitatively recognize corn leaf blight,
as well as other agricultural crops and land uses over
broad areas.

The supply of remotely sensed data greatly increased
with the launch of Landsat-l (formerly called the Earth
Resources Technology Satellite or ERTS-l) in 1972. From an
orbit 912 km above the earth, the satellite can complete a
full observation of the earth every 18 days. Its multispec-
tral imagery is collected in four visible and infrared wave-
length bands over 185 km wide passes over the earth. This
newest data source with its synoptic view of earth has opened
a whole new dimension to the capability to obtain information
about earth resources.

Bauer and Cipra [4] used multivariate pattern recogni-
tion methods implemented on a digital computer to classify
Landsat-1 data acquired over a three-county area in northern
Illinois. The classification of the Landsat data, as mea-
sured by an independent sample of test fields, was 85% accu-
rate on a point by point basis (Table 2). Although there
were errors in the classification of individual data points,
area estimates made over the three-county area were within a
few percent of those made by the U.S. Department of Agricul-
ture (Table 3).
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Table 2. Classification of corn, soybean, and "other" test
fields by computer-aided analysis of Landsat-1
mu1tispec£ra1 scanner data for DeKa1b County,
Illinois.

Number of points classified as
Crop

Corn
Soybeans
"Other"

Number
of

points

3968
1113

295

5376

Corn

3367
115

16
3498

Soybeans

357
855

50

1262

"Other"

244
133
234

611

Percent
correctly
classified

85
77
79

83

a'From Bauer and Cipra [ 4 ].

Table 3. Comparison of area estimates made by U.S. Department
of Agriculture and from classification of Landsat-1
multispectral scanner d!ta for DeKa1b, Ogle, and
Lee Counties, Illinois.

Percent of total area
Crop USDA LANDSAT

Corn 40.2 39.6
Soybeans 18.0 17.8
Other 41. 8 42.6

aFrom Bauer and Cipra [ 4 ].
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2.0 OBJECTIVES

The long term objective of this investigation is to
develop and test procedures utilizing Landsat data to not only
identify, but more importantly, determine the areal extent
and distribution of earth surface features over large geo-
graphic areas. The specific applications selected for this
investigation are crop identification and area estimation for
two states in the Central United States.

There is high probability that improved crop production
information, long recognized as a potential application of
remote sensing, can be obtained from Landsat data. The wide
area coverage of Landsat, linked with computer processing,
offers a unique opportunity to improve upon the sampling
methods now used for making area estimates from ground-based
systems. This is particularly true as the size of the area
decreases, e.g. state, district, county. Further, the sequen-
tial coverage of Landsat should lead to improvements in the
timeliness of the estimates. Both of these aspects would re-
sult in economic and social benefits.
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The specific objectives of this study are:
Using Landsat data and computer-implemented
pattern recognition, classify the major crops
from regions encompassing different climates,
soils, and crops.
Estimate crop areas for county and state size
areas using the crop identification data ob-
tained from the Landsat classifications.
Evaluate the accuracy, precision, and timeli-
ness of crop area estimates obtained from
Landsat data.

Two important underlying premises to be tested in the
investigation are:

The synoptic view of Landsat provides the
opportunity to obtain crop production
information over large areas, e.g. states
and countries.
By using computer-implemented data analysis
to classify pixels distributed over entire
counties, it is also possible to make accurate
and precise estimates for local areas, e.g. counties.

The successful accomplishment of the investigation would
contribute to the development of earth resources surveys by:

Leading to operational use of satellite data
for obtaining crop area estimates.
Refining techniques which could also be
applied to other problems such as crop yield
forecasts, natural resource inventories, and
measurement and monitoring of damage caused
by floods, drought, insects and disease.
Developing improved methods of obtaining
necessary ground truth.
Testing statistical sampling models designed
specifically for remote sensing applications.
Providing data for determining needed
information on costs and benefits of
obtaining information using remote sensing.
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3.0 SELECTION AND DESCRIPTION OF TEST AREAS AND CROPS

Kansas and Indiana were selected as the test states for
this investigation. Winter wheat in Kansas and corn and soy-
beans in Indiana were selected as the crops for which area
estimates would be made from classifications of Landsat data.

The test areas and crops were selected to sample the
range of conditions which are present in the Great Plains and
Corn Belt regions of the United States. The selections of
test areas and crops were made taking into account the spec-
tral and spatial parameters of the Landsat data and the charac-
teristics of crop production. On the "spectrum of difficulty",
wheat identification in Kansas is undoubtedly an easier problem
than corn and soybean identification in Indiana. That is, the
Landsat data is likely to be more adequate for winter wheat
identification in Kansas than for corn and soybean identifica-
tion in Indiana.

Winter wheat is the first crop to "green-up" in the
spring, has the greatest amount of green biomass (except for
alfalfa) during the April to mid-June period, and at maturity
in late June and early July is the only cover type 'which is
golden-yellow in color. In other words, during much of its

12



growth cycle it is dissimilar from the other cover types
present. Additional factors simplifying the task of wheat
identification and area estimation in Kansas is that wheat is
grown in relatively large fields, on a large percentage of the
agricultural land, and with relatively few other cover types
and crops present.

In comparison, corn and soybeans in Indiana are warm
season or summer crops which are green at the same time as
many other cover types present during the summer in Indiana.
Some of the possible "confusion" cover types include trees,
pasture, forage crops, and oats. Secondly, field sizes in
Indiana are much smaller than in Kansas. This is due to the
greater heteorogeneity in soils and the greater number of
crops being grown. The smaller field sizes cause a greater
fraction of pixels to fallon field boundaries and include
more than one cover type. In summary, corn and soybeans in
Indiana are more like the classes they are to be discriminated
from than is the case with winter wheat in Kansas.

Kansas is the number one wheat producing state in the
nation [16]. Its wheat production for 1975 totaled 9.6 million
metric tons (351 million bushels), 10% above 1974 and second
only to the record 10.5 million metric tons (385 million
bushels) produced in 1973. The 1975 crop was seeded on 5.2
million hectares (12.8 million acres), 7% more than a year
earlier. Area harvested for grain, at 4.9 million hectares
(12.1 million acres), was 4% above the previous year.
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Abandonment, at 5.5%, was slightly above recent years but
well within normal rates of abandonment. The average yield of
19.5 quintals per hectare (29 bushels per harvested acre) was
1.0 quintal (1.5 bushels) above the 18.5 quintal (27.5 bushel)
average in 1974. The distribution of wheat production in the
state is shown in Figure 1. The farm value of the 1975 wheat
crop in Kansas was 1.2 billion dollars.

Kansas soils were developed under mixed or short prairie
grass vegetation. Average precipitation varies from 38
centimeters (15 inches) in the west to 81 centimeters
(32 inches) in the east. The climate is continental in most
of the state, becoming semi-arid in the west. The distribution
and amount of precipitation during the year fit the requirements
of winter wheat better than any other crop in much of the state.
Other important crops grown include corn, grain sorghum, and
alfalfa. The amount of irrigated land is increasing each year.
There were 20.2 million hectares (49.9 million acres) of land
in farms in 1975; crops were harvested from 12 million hectares
(30 million acres).

In 1975 Indiana ranked third among the states in both
corn and soybean production [15]. The 2.3 million hectares
(5.6 million acres) of ~orn harvested was a record high. The
average corn yield was 59 quintals per hectare (98 bushels
per acre). Production at 13.5 million metric tons (552 million
bushels) was the second largest crop on record. The area in
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Figure 1. The distribution of 1975 wheat production in Kansas.
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soybeans was 1.5 million hectares (3.6 million acres), 7% below
the previous year. The 20.7 quintal (33 bushel) average yield
was a record high and total production of 3.0 million metric
tons (120 million bushels) was the second greatest ever. The
distributions of Indiana corn and soybeans are shown in
Figure 2.

Indiana includes both glacial and non-glacial soils, with
topography ranging from the nearly level prairies of northern
and central parts of the state to the rolling and steep lands
of the southern areas of the state. Both dark colored soils
developed under prairie vegetation and light colored soils
developed under forest are present. The climate is typically
continental with cold winters, warm summers, and frequent
short period fluctuations of temperature, humidity, cloudiness,
and wind direction. The well-distributed annual precipitation
of 81 to 102 centimeters (32 to 40 inches) favors high
agricultural production. Sunshine averages more than 70% of
its possible duration for the summer months and summer precipi-
tation occurs mostly during short duration showers or thunder-
storms.

16
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Figure 2. Corn and soybeans acreage harvested in Indiana, 1975.



4.0 EXPERIMENTAL APPROACH AND PROCEDURES

The approach used in the investigation built on proce-
dures developed and utilized in previous research at LARS
with the objective of extending them to larger areas. The
procedures were developed upon five fundamentals which were
determined early in the investigation:

The classifier would be trained and tested using
aerial photography as reference data.
Counties without reference data would be classi-
fied using training statistics from an adjacent
county having similar crops and soils and lying
in the same Landsat frame.
Area estimates would be made from a systematic
random sample of pixels distributed over the
entire county.
Area estimates would be made on a county basis
and aggregated to district and state levels.
Estimates would be adjusted for classification
bias.

The implementation of the basic steps is illustrated in
Figure 3. The remainder of this section describes in detail
the procedures used in the investigation.
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EXPERIMENT DESIGN AND PLANNING
I

t 1
ACQUISITION AND J'CQUISITION OF
SELECTION OF AERIAL PHOTOGRAPHY
LANDSAT DATA

~II ,~
DIGITIZATION OF INTERPRETATION OF
COORDINATES AERIAL PHOTOGRAPHY

1

ANALYSIS OF LANDSAT DATA

TRAINING
CLASSIFICATION

TABULATION

,1/

PREPARATION OF AREA AND VARIANCE ESTIMATES

'" II

EVALUATION OF RESULTS

Figure 3. Implementation of experimental approach.
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4.1 Acquisition and Selection of Landsat Data

At the beginning of the project a standing order was
placed with the EROS Data Center for Landsat-2 photographic
imagery over Kansas and Indiana. The imagery was the basis
for decisions of the choice of scenes to be used for classi-
fication. If a scene was chosen for use, the bulk computer
compatible tape was then ordered retrospectively. Landsat-2
was the primary source of multispectral scanner (MSS) data,
with Landsat-1 scenes being used only to complete the cover-
age for the Southwestern Crop Reporting District (CRD) in
Kansas.

The selection of a Landsat frame to classify for a
given county was based upon the date of the Landsat data, the
location of ground truth, and the amount and location of
cloud cover. The desired attributes were that the crops of
interest were spectrally discriminable at the time of the
Landsat pass; aerial photography was available over areas
similar in crop stage and soils in the same frame; and both
the county to be classified and the training areas were not
obscured by clouds or bad data.

The Landsat frames chosen for the analysis in Kansas
and Indiana are shown in Figures 4 and 5, respectively. The
amount of cloud cover created a serious problem for obtain-
ing data for much of Indiana and northeastern Kansas. As a
result, satisfactory data was not available for the Northeast
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Key
Landsat Scene LARS Run

ID Number Date
1 2165-16450 75013800 July 6
2 2146-16392 75005800 June 17
3 2163-16334 75006500 July 4
4 2165-16453 75004600 July 6
5 2146-16395 75005900 June 17
6 2163-16340 75006600 July 4
7 2144-16282 75005600 June 15
8 2147-16460 75006200 June 18
9 5032-16310 75007200 May 21

10 2073-16342 75001500 April 15
11 2109-16341 75005000 May 11
12 2072-16284 75000900 April 9
13 2144-16284 75005700 June 15
14 2107-16225 75004900 May 9
15 2142-16171 75005400 June 13

Figure 4. Landsat Coverage for Kansas.
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Key
Landsat Scene LARS Run

ID Number Date
1 2228-15515 75009100 September 7
2 2228-15522 75009200 September 7
3 2209-15464 75009000 August 19
4 2173-15480 75008700 July 14
5 2208-15405 75010000 August 18
6 2208-15412 75010100 August 18

Figure 5. Landsat Coverage for Indiana.
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and East Central CRDs in Kansas. In Indiana, the only dis-
tricts that had complete Landsat coverage were the Northwest-
ern, West Central, Central and East Central.

Tables 4.and 5 illustrate the cloud cover problem. The
standing order for Landsat-2 photographic imagery requested
scenes that contained less than 50% cloud cover. Since a
low cloud cover percentage does not necessarily mean that a
scene is usable for analysis, the number of usable scenes is
specified in Tables 4 and 5. For example, a frame could be
half in Indiana and half in Illinois. If the frame has 10-20%
cloud cover but the clouds cover the Indiana portion of the
frame, it is unusable. Or, if there are three or four large
cloud patches which occur as long streaks across the frame,
the frame is unusable even though the cloud cover may have
only been 20%. The magnitude of the cloud cover problem is
indicated in th€ tallies of data acquired and data used which
show that only 21 out of 93 frames in Kansas and only eight
out of 40 in Indiana were usable.

In Kansas, there was April data available to cover the
entire south central CRD and data in May and June to provide
duplicate coverage for ten of the thirteen counties. It was
decided to analyze these ten counties twice and compare the
results. Figure 4 indicates which counties were analyzed
twice and which frames and dates were used. In the statis-
tical analysis of the results for Kansas, both dates were
used for most of the statistical tests. However, the tables
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Table 4. Summary of acquisition and usability of Landsat-2
data for Kansas, April 1 - July 17, 1975.

No. Frames No. Frames No.
Acquired by Received from Usable

Month NASA/GSFC EROS Data Center* Frames
April 29 8 6
May 28 9 2
June 18 15 9
July 18 9 4

Total 93 41 21

*Standing order for all frames with < 50% cloud cover.

Table 5. Summary of acquisition and usability of Landsat-2
data for Indiana, July 1 - September 7, 1975.

No. Frames No. Frames No.
Acquired by Received from Usable

Month NASA/GSFC EROS Data Center* Frames

July 14 11 2

August 16 7 4

September 10 6 2

Total 40 24 8

*Standing order for all frames with < 50% cloud cover.



in sections 5.2 to 5.3 display figures only for the second
date for these ten counties since the second date was closer
to the time the wheat was harvested. The estimates made at
harvest time are more important since the SRS estimates for
area harvested were used for comparison of results.

4.2 Acquisition of Aerial Photography

A critical part of the entire investigation involved the
reference or "ground truth" data set to be utilized in con-
junction with the computer-aided analysis of the Landsat MSS
data. Reference data was required for training the classifier
and to test the accuracy of classification. Detailed crop
type maps do not exist because the crop grown in an individual
field generally changes each year. And, indeed some field
boundaries are changed from year to year. Therefore, current
reference data sets had to be acquired to support the planned
Landsat data analysis.

In many previous agricultural remote sensing experiments,
reference data were obtained by on-the-ground identification
and recording of crop type and other information by the
researchers or local USDA personnel. But, the amount of data
which can be obtained in this way is restricted by the time
and personnel available and generally can be done for only a
few relatively small areas. Resources were not available to
implement such an effort, even using sampling, for two
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entire states.
During the CITARS project conducted by NASA/JSC, LARS,

and ERIM, this type of ground observations was supplemented
by interpreting aerial color infrared photography acquired
concurrently and over the same area as the ground observa-
tions [5]. The accuracies of crop identification by photo-
interpretation routinely exceeded 95% and the data were
successfully used for training and test purposes. It was
therefore decided to take this approach one step further
and make aerial photography the primary reference data source
to identify and locate samples of wheat, corn, soybeans, and
other cover types in the Landsat data.

After studying soil, climatology, and land use maps,
flightlines were selected throughout each state to sample the
variation in soils, land use, and crops. The flightlines
were oriented north-south following major highways in Kansas
and Indiana so that the aerial photography and Landsat data
could be coordinated easily.

A 70 romHulcher two-camera system was used with color
infrared and color transparency film. The average ground
speed was 275 km per hour and photographs were taken, with
both cameras, at intervals of 38 seconds, producing a contin-
uous strip of imagery with an overlap of 25-30%. The average
altitude for each flight mission was 3,000 meters. The
approximate scale of the photography was 1:80,000. Each frame
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of aerial photography included an area roughly four kilometers
square (2.5 x 2.5 square miles). Examples of the photography
are shown in Figures 10 and 11.

In Kansas, aerial photography was acquired on April 29-30
and June 26-27. Both dates were quite adequate for differenti-
ating wheat from all other cover types. The June mission
covered the eastern counties (and some western counties) while
the April one covered the rest of the state (Figure 6).

The flightlines and dates of aerial photography acquisi-
tion for Indiana are shown in Figure 7. The May photography,
when used concurrently with the July or August photography,
helped to differentiate corn and soybeans from all other
fields.

4.3 Digitization of Coordinates

The Landsat coordinates for county boundaries were needed
in order to make county crop estimates. In addition, three
to eight points were needed along the flightline in a county
in order for the analyst to match a computer map of Landsat
data to the aerial photography. To find coordinates, the
following procedure was used:

1. Determine which counties are contained in the
Landsat scene.

2. Locate 25-30 checkpoints in the Landsat scene.
3. Digitize these checkpoints on a 1:250,000 USGS map.
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4. Digitize points defining county boundaries.
5. For each county that has aerial photography,

digitize three to eight points along the flight-
line.

6. Use a bivariate quadratic regression routine to
fit coordinates of the checkpoints from the
Landsat scene to the corresponding coordinates
on the USGS maps. Then calculate Landsat coor-
dinates for points defining county boundaries
and checkpoints along the flightline.

7. Record the Landsat coordinates for county bound-
aries, and mark the Landsat coordinates for
flightline points on the county maps.

In the following paragraphs each of the steps is described
further.

The outlines of the state and all the county boundaries
are displayed on a digital display device. Using the lati-
tude and longitude for the Landsat scene center, the outline
of the scene can be superimposed. A photograph taken of
this image aids in determining which counties are covered.

In order to locate checkpoints, the data was displayed
one channel at a time, in 16 gray levels. Twenty-five to
30 checkpoints were found, generally at the intersection of
two highways, and the Landsat coordinates of these points
were recorded.

The (x,y) coordinates of the checkpoints found in the
Landsat scene, the points defining the county boundaries,
and additional checkpoints along the flightlines are obtained
from USGS 1:250,000 scale maps. A regression routine was
used to fit the Landsat checkpoints to the checkpoints
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digitized from the USGS maps. The Landsat coordinates of
the county boundaries and additional points along the flight-
lines were then listed and recorded on maps (Figures 8 and 9).
The Landsat coordinates of the county boundaries were later
used for tabulating county classification results. The
coordinates of the points along the flightlines were used
by the analysts to locate the flightlines in the Landsat
data.

4.4 Interpretation of Aerial Photography

Large scale aerial photography was used as reference data
following the assumption that the crops of interest could be
readily and accurately identified. Standard photointerpre-
tation techniques were used to identify fields of wheat and
nonwheat in Kansas and fields of corn, soybeans, and "other"
in Indiana. The coordinates of the identified field'swere
then located in Landsat data. Wheat was relatively easy to
identify in Klnsas; corn and soybeans were more difficult
to identify in Indiana. Fields which were not positively
identified were not included as either training or test fields.
Problems in photointerpretation, therefore, resulted in smaller
training sets rather than inaccurate identification. Two
general problems, clouds or haze and improper film exposure,
were occasionally encountered, but did not seriously affect
the photointerpretation process.
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Examples of the aerial photography over Kansas and
Indiana are shown in Figures 10 and 11, respectively. These
figures illustrate scale, quality, and appearance of major
cover types. The difference in the number and size of fields
in a section of land in the two states is also illustrated.
4.4.1 Kansas Wheat

Photography acquired on April 30, 1975, was used as ref-
erence data for all of Kansas except the Southeast CRD. On
this date the wheat fields had nearly total ground cover
and were light green compared to alfalfa or clover and wheat
during May. Clover and alfalfa were the only other crops
achieving full ground cover and a bright green color at this
time in the season. Confusion of wheat with these crops was
occasionally a problem, but generally clover and alfalfa were
brighter red on the color infrared film and could be discrim-
inated from wheat. The planting patterns in wheat fields
also helped in its identification. Pastures could usually
be easily separated from wheat fields in the infrared photo-
graphy. Color infrared photography was used exclusively for
this date.

Photography of June 26-27, 1975, was used for a limited
area in the southeast part of the state. By this date, winter
wheat was mature and harvest was ready to begin. Thus, with
the straw dead, the wheat fields are golden yellow, a color
which readily separates them from any other major feature
present at this time. Primarily the Ektachrome color positive
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Figure 10. Examples of color infrared and color aerial
photography acquired over Finney County, Kansas
on April 20 and June 27, 1975, respectively.
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Figure 11. Example of color infrared photography
acquired over Wayne County, Indiana onAugust 20, 1975.
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images were used for the interpretation at this date, since
the wheat fields could be easily identified on it.
4.4.2 Indiana Corn and Soybeans

Almost complete coverage of the Indiana flightlines was
achieved on May 27, 1975, but corn had not yet emerged and
soybeans may not even have been planted at this time. Photo-
graphy from this date, however, was useful in separating
corn and soybean fields from other fields since corn and
soybeans are the primary crops appearing as bare soil at this
time.

The quality of the photography taken in July over Indiana
was generally poor; there was a hazy overcast and the film was
often overexposed. On the infrared film, corn fields appeared
deep red and were confused with pasture. This photography was
used only in conjunction with photography from another date.

During the period from August 20 to September 6, 1975,
corn fields are tasseled, thus their green color as viewed
from the air is not as intense. These fields are therefore
easily separated from the soybean fields, which are at a full
leaf stage, and have a uniform deep green color. Corn fields
also exhibit more texture than most other cover types. This
was the optimum period for obtaining photographic data over
Indiana during 1975, and it was more extensively used as
reference data than any of the other time periods. Only the
color infrared images were used since soybean fields appeared
as a bright red, and corn fields were of a less intense red
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or brownish color.

4.5 Analysis of Landsat Data

The Landsat data analysis techniques used in the inves-
tigation utilized the LARSYS Version 3 multispectral data
analysis system. LARSYS is the software system, an inte-
grated set of computer programs, for analyzing remote sensing
data developed by Purdue/LARS during the past decade. The
pattern recognition concept utilized in LARSYS represents a
powerful and quantitative methodology for accommodating the
multivariate nature of remote sensing data. While the LARSYS
approach takes full advantage of modern computer technology
for data processing, man is an indispensable part of the
analysis process. Thus, the techniques are better described
as "computer-assisted" rather than "automatic". The process-
ing functions of LARSYS are shown in Figure 12. Its theoret-
ical basis and details of the algorithm implementation are
described in references [24] and [22], respectively.

In utilizing the LARSYS software for analyzing multi-
spectral scanner data, one normally follows a procedure that
involves: (1) defining a group of spectral classes (training
classes); (2) specifying these to a statistical algorithm
which calculates a set of defined statistical parameters;
(3) utilizing the calculated statistics to "train" a pattern
recognition algorithm; (4) classifying each data point within
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the data set of interest (such as part of a Landsat frame)
into one of the training classes; and finally ($) displaying
the classification results in either map or tabular format
(or both), according to the specifications of the application.

During the past few years, experience at LARS has shown
that there are many possible refinements in the methodology
utilized by the analyst for obtaining training classes, while
the rest of the procedure does not vary much from one analysis
task to another. The most common techniques for defining
training classes involve the so-called "supervised" approach,
and the "unsupervised" or "clustering" approach.

In the "supervised" approach, the analyst selects fields
of known cover types and specifies these to the computer as
training fields, using a system of (x,y) coordinates. The
statistics are obtained for all categories of cover type in
each area to be classified. The data are then classified
and the results evaluated. Because the analyst had defined
specific areas of known cover types to the computer, such
classifications are referred to as "supervised".

The second method uses a clustering algorithm which
divides the entire area of interest into a number of spectrally
different classes. The number of spectral classes into which
the data will be divided must be specified by the analyst.
The spectral classes defined by the clustering algorithm are
then used to classify the data, but at this point the analyst
does not know what cover type is defined by each of the
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spectral classes. After the classification is completed,
the analyst will identify the cover type represented by each
spectral class using available reference data or cover type
maps. Because the analyst does not need to define particular
portions of the data for use as training fields, but must
only specify to the computer the number of spectral classes
into which the data is to be divided, a classification using
this procedure is referred to as "unsupervised".

Additionally, several variations of these basic methods
for defining training classes are possible. One is to select
training areas of known cover type (a supervised approach up
to this point), but then utilize the clustering algorithm to
refine the data into unimodal spectral classes for each cover
type. This is called a "modified supervised" approach and is
the approach which was used in this investigation.

The remainder of this section describes the analysis
methodology and additional details of the training procedure.
An overview of the steps in the analysis sequence is shown
in Figure 13.
4.5.1 Selection ofTrai~ing Data

The accuracy of classification results is highly depen-
dent upon the training data. Selection of training areas was
based on blo factors: first, the amount and quality of refer-
ence data (aerial photography) available, and second, the
presence of a representative sample of cover types of the
area(s) to be classified. To insure that the best
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Figure 13. Flowchart of procedures used in
analysis of Landsat data.
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classification accuracy is obtained, a sample of every
spectral class of each cover type should be included in one
or more of the training areas. This provides a reasonably
representative training set to the classification algorithm.

The analyst's first task was to gather and coordinate
the information available about the county or counties to be
analyzed. The Landsat scene had been selected (see Sec. 4.1)
and the Landsat coordinates for each county boundary had
been found. (see Sec. 4.3). In addition, county maps had
been prepared showing the Landsat coordinates of the check-
points along the aerial photography flightline (Figure 10).
The frame numbers of the aerial photography for each county
were marked on the map. From this information, the analyst
could determine the areas in the Landsat data corresponding
to frames of aerial photography and then select the areas to
be used for training the classifier.

Training areas of 100 lines and 100 columns (approxi-
mately 8 x 5.5 km) of Landsat data were selected in areas
corresponding to aerial photography. For smaller counties,
especially in Indiana, three to five training areas were
chosen covering the entire flightline. In Kansas, four to
six areas were selected with at least one in both the north-
ern and southern portions of the county in order to adequately
represent the variation present in the county.

To facilitate locating agricultural fields in the Landsat
data, a spectral class map was produced by clustering each
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training area. The clustering algorithm implemented in
LARSYS finds natural groupings in the spectral data utilizing
all four wavebands. Generally six to eight classes were
sufficient to provide an image on which the crop fields were
readily identifiable. This approach was found to be more
satisfactory than working with gray scale maps of a single
spectral band.

Examples of cluster maps are shown in Figures 14 and 15;
the color infrared photographs of the same areas were shown
in Figures 10 and 11. The cluster maps were matched with the
corresponding frames of aerial photography, and roads, towns,
and field boundaries were sketched on the cluster maps.

Fields were marked on the cluster maps and their cover
type identified from the aerial photography. During the
photointerpretation process, the analyst became familiar with
the variation in wheat, corn, soybeans, and other fields.

Training fields had to meet three criteria. First, the
cover type of the fields selected for training had to be posi-
tively identified by the photo-interpreter. Secondly, the
fields themselves must be of only one cover type; for example,
if a ditch ran through the field, the analyst would avoid
the ditch and select samples on either side of it. Thirdly,
the training fields must adequately represent the variation
present in the cover types throughout the area to be classi-
fied; to insure this, the fields were geographically dis-
persed throughout the flightline. The Landsat coordinates
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Figure IS. Example of cluster map used for location and
identification of fields in Wayne County,
Indiana. (C = corn, S = soybeans, 0 = other)
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of field center (non-boundary) pixels were then obtained and
field description cards prepared.

If there were a~y reservoirs or rivers in the county,
training samples were obtained for water. If there were no
bodies of water in the f1ight1ine, the analyst obtained an
additional cluster map which would include water bodies.
Training samples for water were then selected from this area.'

As a general rule at least 25 wheat samples and 25 other
samples were chosen in Kansas. In Indiana, fields were much
smaller and homogeneous samples were difficult to find due to
the large proportion of boundary pixels. In general, more than
25 samples each of corn, soybeans, and other were chosen, but
the samples were small compared to those for Kansas.

The number of samples used for training the classifier
in Kansas and Indiana is shown in Tables 6 and 7, respectively.
The median number of fields used for training in Kansas was
66 and the median number of pixels used was 2600. In Indiana,
the corresponding figures are 163 fields and 2750 pixels.
4.5.2 Development of Training Statistics

The training fields for each major cover type have been
selected, but the spectral characteristics of each class have
not been calculated. Each major cover type must be divided
into its spectral subclasses, each of which must be a uni-
modal distribution to satisfy the assumptions of the maximum
likelihood G~ussian classifier and is characterized by its
mean vector and covariance matrix. Confusion between the
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Table 6. Number of fields and pixels used for training and
testing the classifier in Kansas.

Training Samples Test Samples
No. No. No .. No.

County Fields Pixels Fields Pixels

Northwest District
Cheyenne 47 1587
Graham 59 1225
Norton 30 600
Sherman 76 2609 75 2289

West Central District
Greeley 82 3090 81 2672
Ness 82 2400
Trego 50 2955 51 2345
Wallace 67 4139

Southwest District
Finney 127 2917
Ford 119 3320 121 2763
Hamilton 117 7161 96 5785
Haskell 77 2118
Hodgeman 82 5105 83 4927
Seward 43 1001
Stanton 98 6337 132 2884

North Central District
Cloud 77 1174
Osborne 39 1446
Ottawa 56 3215
Smith 97 2924

Central District
Barton 55 2928
McPherson 57 2562
Russell 42 1257
Saline 50 1847 41 994

South Central District
Barber 58 1942 25 2147
Harvey 69 2202
Pratt 69 2850 71 3433
Stafford 62 2586 31 2522
Sumner 49 2244

Southeast District
Allen-Neosho 126 4225 131 4149
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Table 7. Number of fields and pixels used for training
the classifier in Indiana.

Training Samples
No. No.

County Fields Pixels

Northwest District
Benton
Lake
LaPorte
Newton
Pul aski -.Starke
White

West Central District
Fountain-Parke
Montgomery
Owen
Tippecanoe
Vigo
Warren

Central District
Decatur
Grant
Hamilton-Howard-Tipton
Johnson-Shelby
Madison

Ea~t Central District
Fayette
Jay
Randolph
Wayne
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144 3271 '
163 3424
167 3976
145 2684
192 4475
224 3002

337 4419
223 3715

82 1595
92 1685

120 2543
63 1269

155 2748
163 1690
284 4145
174 2825
158 1888

110 1868
166 1862
277 3035
203 2617



spectral subclasses of different cover types must be mini-
mized to decrease the error in classification. The adequacy
of the training statistics should be evaluated before carrying
out large area classifications.

In order to satisfy the first of these three requirements,
the cluster function was again used to obtain subclasses for
the major cover types of wheat and nonwheat in Kansas and
corn, soybeans, and other in Indiana. This time, instead of
one large rectangular area, the field center samples of each
of the major cover types were clustered separately'to find
natural groupings or spectral classes within the cover types.

Statistics were calculated to represent each spectral
class and the transformed divergence between each pair of
classes was calculated. The saturating transformed divergence,
a number betwe~n 0 and 2000, provides a measure of the distance
between classes in multi-dimensional space. High values indi-
cate class pairs which are more separable and which, if grouped,
would yield a bimodal distribution. Class pairs with small
divergence values are spectrally similar and may be confused
with each other during classification. If classes of different
cover types were spectrally similar, the analyst inspected the
fields involved by checking the location and type of field on
both the cluster map and the aerial photography. If an error
in field identification or location had been made, the class
in error was deleted. If no error occurred, the confusion
classes were left in the training statistics since deleting
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one or both of them would have biased the classification
results.

Test field classification results, if available, or
training field results were used to evaluate the adequacy of
the training statistics before the county was classified in
order to allow for additional training if required. For many
counties in Kansas, there were enough sample fields available
that both a training and a test set could be developed. A
statistical test showed that the proportion estimates calcu-
lated using training field performance matrices were not
significantly different in accuracy from estimates calculated
using test field performance matrices. In Indiana, where the ~
field sizes were small compared to Kansas, the number of
usable samples was much smaller, and selecting test fields
from the sample fields would have greatly reduced the size of
the training set.
4.5.3 Classification and Tabulation of County Results

The final training statistics were used to classify a
systematic random sample of the Landsat pixels within each
county (Figure 16). In a systematic random sample, the first
sample is chosen randomly and the remainder are determined by
a constant sampling interval. Systematic random sampling was
convenient and has the advantages of high precision and excel-
lent geographic stratification [ 9].

For about 60 counties in Kansas and a few in Indiana,
every other line and column was classified, a one-fourth
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Figure 16. Schematic of a systematic random sample
of Landsat pixels classified within a
county boundary.

52



sample. However, every fourth line and column, a one-.
sixteenth sample, was used for the remainder of the counties.
Tests showed that there was no significant difference in
results obtained between these two sample sizes.

When a county was classified with a training set at
least partially trained with fields from that county, the
classification is labelled "local". A "nonlocal" classifi-
cation is one in which the training set does not contain any
training fields from the county classified. The training set
used to perform a nonlocal classification came from a county
in the same Landsat frame having similar soils and land use.
Figure 17 is a map of Kansas showing geographically the local
and nonlocal classifications and the source of training data
for nonlocal classifications. Similar information for the
counties classified in Indiana IS gIven in Figure l8~ Tables
Al and A2 in the appendix summarize the Landsat frame, date
of data, and source of training statistics for all counties
classified in Kansas and Indiana.

The number of points of each major cover type and the
total number of points in the county were tabulated. These
points fall within an irregular polygon in the Landsat data
which corresponds to the county boundaries. Using the
coordinates of cities and large towns which had been obtained
earlier, the number of points of each major cover type in the
urban areas were tabulated and subtracted from the county
totals. These adjusted totals form the base of the area and
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Figure 17. Local and nonlocal classifications in Kansas. Arrows point
from the source of training statistics to the area classified;
shaded areas denote local recognition counties.
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Figure 18. Local and nonlocal classifications in
Indiana. Arrows point from the source
of training statistics to the area
classified; shaded areas denote localrecognition counties.
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proportion estimates for the county.

4.6 Preparation of Area and Variance Estimates

Following ~lassification, crop area and proportion
estimates were made. Estimates of the areal extent or propor-
tion of a cover type were desired for county, crop reporting
district, and state levels. The county was the smallest unit
for which an estimate was wanted, so estimates of the cover
types of interest were made for each county and then aggregated
to the district and state levels. Steps in the area estimation
procedure included: (1) calculation of the area and proportion
estimates, (2) correction of the estimates for classification
bias, and (3) calculation of variance estimates. For counties
in which Landsat classifications were not performed, a regres-
sion procedure utilizing historical data and current Landsat
estimates was used.
4.6.1 Area and Proportion Estimates

The Landsat estimated proportion of the ith crop in the jth
county was calculated using the equation

p ..1J
n..

= ..21.n.
J

where n .. is the number of pixels classified as crop i and1J
n. is the total number of pixels in the sample. The esti-

J
t d h f .. th .th b lIdma e ectares 0 crop 1 1n e J-- county can e ca eu ate

in two equivalent ways:
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h.. = p .. h.
IJ IJ J

where p .. is defined as above and h. is the number of hectares
IJ J

in the county, or
h..

IJ
where n .. is as above and k isIJ
(approximately 0.45).

=5-)
the area in hectares of a pixel

The proportion of crop i in a CRD is found by
where the summations are taken over all the counties in

h .. and h. are as defined above. Area and propor-
IJ J

tion estimates for entire states are found similarly.

Area and proportion estimates for the crop reporting
districts and the entire state are aggregated from the county
estimates. The area estimate of crop i for a CRD is found
by E h"J summing the area estimates from all the counties inIJ
the CRD.

'"Eh ..

~
theJ CRD and

4.6.2 Correction for Classification Bias
Experience has shown that it is inevitable that some

pixels are incorrectly identified by the maximum likelihood
classifier. The primary source of these errors is overlapping
density functions for two or more classes. For example, some
corn looks like soybeans and/or some soybeans are spectrally
similar to corn. Classification errors of this type cause
the resulting area estimates to be biased. However, if the
error rates are known the area estimates can be adjusted or
unbiased after the classification has been performed. This
technique was first used in the 1971 Corn Blight Watch
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Experiment [18] and later in a Landsat-l investigation by
LARS [4].

An estimate of the classification error rates is the
matrix of training or test field classification performance,

where e .. is the proportion of samples of type i classified1J
as type j. If P is the vector of true proportions of the
cover types and P the proportions estimated from the Landsat
data, then

Since P and E are known from the classification, but P, the
vector of true proportions, is not known,

)
I

\

is solved. The example of Figure 19 shows how this is done.
It is possible for this method to give a negative value

for the proportion of a cover type. Since it is unrealistic
for an estimate of a proportion or probability to be negative,
an alternative problem was considered when this occurred:

min
O<p.<l
- 1-

Ifor all p., elements of the vector P. This is equivalent to
1

minimizing the Euclidean distance (denoted by I I . I I ) between
the true proportion and the Landsat corrected estimate. The
vector of proportion estimates after bias correction is
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E = (85 .15).18 .82
\

ET = (85 .18).15 .82

(ET)-l = ~. 2239 -.2687)
-.2239 1.2687

~ (~8.9)p = 61.1

P (1. 2239 -,2687) e8.9) = (31.2)= -.2239 1.2687 61.1 68.8

SRS
HARVESTED

31.6

LANDSAT
UNCORRECTED

38.9

LANDSAT
CORRECTED

31.2

Figure 19. A numerical example of classification bias
correction (Cloud County, Kansas).
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~denoted by P. The discussion of bias correction generalizes
to n cover types of interest with E being an n x n matrix
and the vectors having n components.

The corrected estimate will be unbiased if the error
matrix found from the test or training field performance is
the true error matrix. It may not be truly unbiased because of
photo interpretation difficulties or because the flightline
might not be representative of the entire area classified.
4.6.3 Calculation of Variance Estimates

In addition to knowing the accuracy of an estimate, it is
desirable to know the precision, or variance, of the estimate.
The variances of the proportion and area estimates were
obtained as follows. Since each pixel is classified as crop
i or not, the binomial distribution can be used to obtain the
variance of the bias-corrected proportion estimates. For the
jth county, an estimate of the variance is given by

where f. is the county sampling fraction [8]. For individual
J

county estimates, the sampling fraction can be ignored (though
it is not negligible) to give a conservative estimate of the
variance. As

~
h..

1J =

Athe variance of the area estimate h .. can be calculated by1J
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2h.
J

where h. is the total number of hectares in the county.)
In calculating the proportion estimate from the sample

the assumption is made that each pixel would be classified as
a particular crop or not classified as that crop, which leads
to a multinomial or binomial model of the classified data.
The binomial distribution can be used to estimate the total
number of wheat pixels and the percentage of wheat in the
area. Theoretical estimates of the sampling error are then
available [8]. It is also assumed that there is no cyclic
pattern in the data to bias the estimate from a sample taken
systematically. To test these assumptions, a sampling study
was performed early in this project.

The study examined the sampling error produced for a
given sampling fraction against the theoretical error given
by using binomial distribution theory. In order to measure
just the effect of sampling, the error introduced in c1assi-
fication was ignored by comparing the various samples to a
100% sample. The results are based on classifications of Rice
and Morton Counties, Kansas, and were substantiated by further
tests in Benton and Wayne Counties, Indiana.

In the Kansas sampling study, estimates of both the total
number of wheat resolution elements and the percentage of
wheat in the area were calculated for sampling fractions of
50, 33.3, 25, 11.1, 10, 6.25, 4, and 2.8 percent. These
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samples were taken systematically. For example, an 11.1% sam-
ple of the area was obtained by tabulating the classification
with both a line and column interval of three. Nine 11.1%
samples were selected with a different starting point for each
sample. The theoretical variance of these sample estimates
was calculated from the binomial distribution and compared to
the variance among the repeated estimates of the same sample
size. For example, the theoretical variance of an 11.1% sample
was calculated and then compared to the variance of the nine
sample estimates.

The results of the study (Table 8) showed that in all
Ad.:tJVI.

cases the two variances were not significantly different ,') 4N>~,,-,:t:.<- .....
&f{ ,~,:t,d-M'"",{

indicating that the theoretical estimate of the sampling error II\,~~~' u••·•

based on the binomial distribution can be used as the estimate
of the variance of the proportion estimate. The Morton results
show a cyclic effect due to "six line scan" noise. In prac-
tice, Landsat data with such a noise problem was avoided.
Wayne and Benton Counties in Indiana were used to test the
applicability of the Kansas results to Indiana. The results
were consistent with those of Kansas.

The variance for a crop reporting district can be obtained
in two ways. The variance can be calculated as though a sys-
tematic random sample were taken throughout the district or
it can be calculated considering each county as a stratum. The
estimated variance for crop i in the stratified case would be
given by:
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Table 8. Theoretical and computed sampling errors of wheat
proportion estimates for different sample sizes
in two counties in Kansas.

Standard Error (%)
% Sample Theoretical Computed

4

Rice County
50.0 0.0902 0.0361, 0.1126*
33.3 0.1277 0.1018, 0.1597
25.0 0.1563 0.0992
11.1 0.2555 0.1824
10.0 0.2717 0.1752, 0.1937

6.25 0.3509 0.2812
4.0 0.4453 0.2797
2.8 0.5358 0.4890

Morton County
50.0 0.0867 0.1293, 0.9233
33.3 0.1226 0.0430, 1.0067
25.0 0.1501 0.7637
11.1 0.2455 0.8799
10.0 0.2599 0.3358, 0.6939

6.25 0.3372 0.6948
4.0 0.4241 0.3405
2.8 0.5152 2.6950

* 50.0%, 33.3% and 10% systematic samples can be taken in two
ways. For example, a 50% sample can be either every other line
or every other column.
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p ..
1J (~ ~l-p ..

. 1J (l-f~n. j)
J

where the summation is taken over all counties in the crop
reporting district [ 8].

In essence, it matters little what formula is used to
calculate the variance estimates whether conservative or not,
because the estimates are very small in either case. The
distribution in Indiana is actually given by the multinomial,
but the variances can be calculated by considering each crop
separately with the binomial assumptions.
4.6.4 Estimation for Counties Without Landsat Data

An alternative approach for crop estimation must be taken
when adequate data for Landsat classification is not available
for an area. One approach to this problem lies in formulating
a regression equation from which a crop prediction can be made.

Regression is valid as a predictor only for the popula-
tion from which it is derived. This predictor will not be valid
for a county which has historical crop acreage or county size
falling outside the range of values used in the derivation of
the regression equation. For these counties, the 1974 USDA/SRS
area estimates were used as the 1975 estimates. Revised
estimates from Kansas and preliminary estimates from Indiana
were used.

For Kansas, the regression model used to predict the area
in hectares of wheat in a given county was:
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where Xl is the 1974 USDA/SRS wheat acreage for the county, X2
is the 1973 USDA/SRS wheat acreage for the county, and X3 is
the total number of acres in the county. The coefficients
80, 81, 82, and 83 are estimated by using the available Landsat
estimates as y values. A pseudo-Landsat estimate is made by
applying these coefficients to the X values of the counties to
be estimated.

Only historical data could be used in the regression in
order to simulate real-time estimation. It was felt that
wheat data before 1973 should not be considered because major
increases in the wheat acreage planted occurred beginning in
1973. The area of the county was also included as a factor
which might contribute to the amount of wheat grown.

For Indiana, similar regression models were used to
predict the area in corn and soybeans. Again, the variables
considered as predictors were the number of acres in the county
and the USDA/SRS estimates of acres harvested in 1973 and 1974
for corn or soybeans. The regression model used was:

A

where Yi denotes the area in hectares of crop i, Xli is the
1974 USDA/SRS estimate of acreage in crop i for the county,
x2i is the 1973 USDA/SRS estimate of acreage in crop i in the
county, and X3 is the total number of acres in the county.
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4.7 Evaluation of Results

Once an adequate training set has been defined, it is
not difficult to classify large geographic areas using
computer analysis techniques. However, unless the accuracy
of such computer classification results can be verified,
little has been accomplished by simply classifying the data
over various areas of interest.

In this investigation two quantitative evaluation tech-
niques were used to judge the accuracy of crop classifica-
tions and area estimates. One evaluation involved statis-
tical sampling of individual areas of known cover types
(designated as test fields). This offers an effective method
of examining inclusive and exclusive classification errors
for the various crops or cover types. Such techniques,
however, must be used with caution, and must be carefully
designed to provide statistical reliability of the results.
In general, areas need to be selected in such a way that
the number of resolution elements in the test areas for each
cover type are approximately in proportion to the amount of
that cover type present in the area.

A second quantitative technique for evaluating classifi-
cation accuracy is comparison of area estimates from the
computer classification and area estimates obtained by some
conventional method. Ideally, crop area measurements from
large contiguous areas would be used for comparison.
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Realistically, it is not possible to acquire a large amount
of ·such data. Therefore estimates of the crop areas or
proportions must be used. The USDA/SRS annually publishes
estimates of the acreage of major crops for counties, dis-
tricts, and states. Estimates or measurements for a smaller
unit such as a township are generally not available.

In addition to evaluating the classification accuracy,
several factors which might have affected accuracy were
examined.
4.7.1 Assessment of Training and Test Field Classification

Accuracy
Test fields are frequently used to evaluate the accuracy

of the Landsat classifications. Areas with a known cover
type which were not used for training are chosen as test
fields. These are then classified and the accuracy of the
classifier determined by the proportions of pixels which are
correctly identified. If these fields have been randomly
selected and their classification accuracy is high, then the
classification of the entire area should be accurate.

In this project test fields were chosen in a manner
similar to training fields. Some of the fields identified
from the aerial infrared photography were randomly selected
as test fields. The method of random selection depended
upon the analyst and included systematic sampling, strati-
fied random sampling, and simple random sampling. However,
in some counties all the available fields were used for
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training, leaving none for test. In these cases, training
field performance was evaluated to determine the accuracy
of the classifier, since a statistical test of counties
with both test and training fields showed that using training
fields to evaluate classification accuracy was not signifi-
cantly different from using test fields.
4.7.2 Statistical Comparison of Landsat and USDA/SRS

Estimates
The standard of comparison for Landsat estimates was

the USDA/SRS estimate of acres harvested. SRS estimates were
us~d primarily because of their availability on a state, crop
reporting district, and county basis for 1975. There is a
national agricultural census which also provides these esti-
mates, but it is performed only every five years and was not
taken in 1975. Acres harvested were used rather than acres
seeded because: (1) the acquisition of Landsat "data used in
this analysis was closer to harvest time than to seeding time
and (2) the harvested acreages are used for estimating total
production. Estimates of both the proportion of total land
area and of the area in hectares of a crop were considered
as variables.

The purpose of USDA/SRS crop surveys is, primarily, to
make national estimates and, secondly, state estimates. The
state estimates are considered to be unbiased and to have
small coefficients of variation, generally not exceeding about
5% for major crops [23]. The SRS does publish county and
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crop reporting district estimates, but coefficients of varia-
tion are not calculated for these estimates. It is expected
that the county and CRD estimates will not be as accurate as
the state and national estimates, and that the coefficients
of variation will be larger at the county level. The SRS
county estimates then are not the ideal standards for com-
parison, but must be used due to lack of any more reliable
data.

The method used to arrive at county estimates varies
from state to state. In Indiana, county estimates are made
on the basis of mail surveys. About 12,000 questionnaires
are mailed to get a response of at least 4,000. This should
guarantee at least 50 responses per county on which to base
the estimates. Themail survey results are adjusted for the
difference from the June enumerative survey (E. L. Park, State
Statistician, Indiana, personal communication). Kansas,
however, uses information from three different surveys to
calculate county estimates. The first is the annual State
Farm Census which is supposed to be an enumeration of all
farming operations in the state, but which contains some
incompleteness. Mail surveys from June and late summer are
combined with the census data to form a composite area esti-
mate for Poach county. These are then adjusted for various
factors and scaled to add to the state estimate (M. E. Johnson,
State Statistician, Kansas, personal communication).
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The levels for testing Landsat against SRS estimates were
determined according to the problem at hand. In choosing a
significance level, a large a is chosen to minimize the chance
of claiming the hypothesis of equality is true when it is really
false; a small value of a is chosen to minimize the chance of
rejecting the hypothesis of equality when it is actually true.
To ascertain whether SRS and Landsat estimates were close,
the two estimates were obtained and the hypothesis of their
equality, the null hypothesis, was tested. Statistical tests
are not designed to prove that the null hypothesis is true,
although in this case that is what we did want to conclude.
In order to be reasonably certain that the SRS and Landsat
estimates are the same, the probability of accepting the
hypothesis of equality, when it was in fact false, was made
very small. This was achieved by choosing a large value of a

such as 0.25.
4.7.3 Analysis of Factors Affecting Classification Accuracy

In order to perform statistical tests on the Landsat
estimates, normality and homogeneity of the data must be con-
sidered. Standard tests for homogeneity were not useful here
because they consider the variance of the sample variances,

2which in this case was zero because the variance cr is deter-
mined rather than estimated by the large sample size used in
Landsat estimation. Instead, the range was used to determine
if the variances were homogeneous for tests on proportions.
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Variances are stable only for proportion estimates in the
0.30-0.70 range II]. Since some values of the Landsat pro-
portion estimates fell outside this range, a transformation was
required. For this range, p was transformed by arcsin IP [1].

The nonhomogeneity of the data affects the statistical
test results by introducing a bias into the test statistic,
in this case either an F-statistic or a t-statistic. The bias
of the F-statistic for the Kansas proportion variances was
calculated and found to be 1.29 [6]. Thus, when testing a
hypothesis with a significance level of a = 0.05, the hypothesis
is really being tested with a = 0.09, and will be rejected too
often. For this amount of bias, p should be transformed.

The bias of the test statistic for Kansas area estimate
variances was found to be 1.17. Thus when testing a hypothesis
with a significance level of a = 0.05, the hypothesis would
really be tested with a = 0.07. This is not as biased as is
the case with the proportion variances, though the null
hypothesis would be rejected slightly too often. Testing was
performed on these variables without transformation. With
larger sample sizes, homogeneity tends to be a minimal problem.
For Indiana, the proportion estimates were transformed and the
hectare estimates were not, following the same pattern as for
Kansas.

Numerous tests were made to identify and assess factors
which might affect the accuracy of the area and proportion
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estimates. Those factors tested included: date of the Landsat
coverage, date of the aerial photography (Indiana only), effect
of the data analyst (Kansas only), the effect of local versus
nonlocal recognition, and the effect of geographic location
(crop reporting districts).

For Kansas, two types of tests were made for testing the
effect of date. The first was a paired comparison of 10
counties which had been classified twice using two different
Landsat frames. The second type of test, done in both Kansas
and Indiana, used all counties which were classified and tested
for a difference due to groups of dates. A limitation of this
test is that date effects may be confounded with other factors
such as geographic location.

Tests for the effect of aerial photography date were not
done in Kansas because essentially only one date was used. For
Indiana, all counties were included in the analysis and tests
were performed in the same manner and with the same limitations
as the tests for the effect of date of Landsat data.

In tests for the data analyst and local vs. nonlocal
recognition effects, all available data were utilized. In tests
to determine the accuracy of a CRD or state, duplicate observa-
tions were not permitted. Of these duplicates, the estimate
derived from the Landsat pass closest to harvest was used
without reference to which one was closer to the SRS estimate.
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5.0 WHEAT IDENTIFICATION AND AREA ESTIMATION IN KANSAS

In this section the results of the Landsat data analysis
for winter wheat identification and area estimation in Kansas
are presented and evaluated. The material includes a discus-
sion of factors affecting classification accuracy, comparisons
and evaluations of training and test field classification
performance, and comparisons of USDA/SRS estimates to Landsat-
derived estimates of the area and proportion of wheat.
Finally, the accuracy and precision of the Landsat estimates
are discussed.

5.1 Analysis of Factors Affecting Classification Accuracy

Although an assessment of factors affecting classifica-
tion performance was not a primary objective, several anal-
yses to assess factors which might have influenced classifi-
cation results were performed in order to more fully under-
stand and interpret the results. The variables tested
included: Landsat acquisition date, data analyst, local vs.
nonlocal classifications, and the interaction of date and
locality~ The results of these tests are presented in this
section. 73



5.1.1 Effect of Landsat Acquisition Date
Ten of the 13 counties in the South Central Crop Report-

ing District were classified twice, using data from two dif-
ferent Landsat passes. All counties were classified using
April data and then reclassified using either Mayor June
data (Table 9). Since these were the only counties for which
multi temporal data were available, they were used to explore
the effect of dates on classification performance. The
"goodness" of an estimate was considered to be its closeness
to the SRS estimate. Paired t-tests showed that there was
no significant difference (a = 0.25) in the accuracy due to
the date of Landsat coverage. The inference of these tests
is not strong due to the small sample size, so a further
study on the effect of dates with larger samples was per-
formed.

A second analysis, including all counties in the seven
districts classified, was performed to determine if there
was an effect due to the date of the Landsat data acquisition,
ignoring other factors. Five groups of dates were considered:
early April, early May, late May, mid-June, and early July.
An analysis of variance showed that neither the proportion
nor area estimates were significantly affected by Landsat
data acquisition period. These results indicate that date was
not a major factor influencing the classification performance
and that all counties regardless of the date of Landsat data
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Table 9. Comparison of wheat estimates from April and Mayor June Landsat data
acquisitions to USDA/SRS harvested estimates, South Central Crop
Reporting District, Kansas.

USDA/SRS Landsat Difference
Harvested Classification From SRS

County Date Hectares Proportion Hectares Proportion Hectares Proportion
(000) (%) (000) (%) (000) (%)

Barber April 69.1 23.3 23.1 7.8 -46.0 -15.5
May 69.1 23.3 89.4 30.1 20.3 6.8

Comanche April 43.4 20.9 31.1 15.0 -12.3 - 5.9
May 43.4 20.9 46.3 22.3 3.0 1.4

Edwards April 53.1 33.4 58.0 36.4 4.9 3.1
May 53.1 33.4 46.6 29.3 - 6.5 - 4.1

Harper April 116.3 56.0 110.8 53.4 - 5.5 - 2.6
-...J June 116.3 56.0 117.8 56.8 1.5 0.7en

Harvey April 55.0 39.3 55.3 39.5 0.3 0.2
June 55.0 39.3 42.2 30.2 -12.8 - 9.1

Kingman April 97.0 43.3 113.7 50.8 16.7 7.5
May 97.0 43.3 124.8 55.8 27.9 12.4

Kiowa April 51. 3 27.5 43.3 23.2 - 8.0 - 4.3
May 51. 3 27 ..5 45.6 24.4 - 5.6 - 3.0

Pratt April 82.6 43.7 91. 3 48.3 8.8 4.6
May 82.6 43.7 80.5 42.6 - 2.0 - 1.1

Sedgwick April 105.3 40.7 71. 0 27.5 -34.3 -13.3
June 105.3 40.7 117.3 45.4 12.0 4.6

Sumner April 196.9 64.3 217.0 70.9 20.1 6.6
June 196.9 64.3 195.8 63.9 - 1.1 - 0.4



acquisition can considered together. The results also

mE':lTI that Cl hest date for Landsat coverage cannot be recom-

inend ed from t his .:;t u l' ..•

5.1.2 _~ff~ct of ~ataAnalyst

Since there WaS no significant date effect, the effect

of analysts on the classification performance could be con-

sidered. This was a nested design with counties appearing

within analysts. Three analyses were run: (1) all counties

(2) all local counties, and (3) all nonlocal counties. Each

restll- shnweJ that the analyst effect was nonsignificant at

any reasonable a level when considering either proportion

or area estimates. Since all analysts used similar methods,

no inferences can be made about methodology; but it can be

concluded that individual analysts did not introduce a bias

in the results.

5.1.3 Effect of Local vs. Nonlocal Recognition

One of the major problems encountered in the LACIE has

been to develop a means for successfully extending training

statistics from a training segment to "recognition" segments.

In our investigation a different methodology involving strat-

ification of counties into groups having similar character-

istics and developing training statistics from throughout the

training county was used. To determine if this method was

satisfactory for classifying several counties the effect of

local vs. nonlocal classification was tested. For proportion
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estimates, the difference became apparent at the 20% signif-
icance level. For area estimates, however, the difference
was significant for any a larger than 0.10. Our conclusion
is that there was some difference in performance between
local and nonlocal counties; the amount of wheat was over-
estimated in local counties and underestimated in nonlocal
counties; but, on the average, nonlocal recognition counties
were closer to SRS estimates than the local recognition
counties. It can probably be concluded that this factor did
not have a strong influence on the overall results.
5.1.4 Effect of Interaction Between Dates and Locality

In the South Central Crop Reporting District, there
appeared to be an interaction between date of the Landsat
coverage and locality. Since the sample size was too small
to draw any inference, a plot was made to examine this effect
for the entire state. The interaction that was present in
the South Central district analysis was not present over the
entire state, although other factors which may have affected
the accuracy were ignored. There is no good test on the
significance of this interaction since variance estimates
from the SRS are not available.

5.2 Landsat Classification Results

The Landsat classification results include the training
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and test field performances; estimates of the area and pro-

portion of wheat for the state, districts, and counties;

comparisons of the Landsat estimates to USDA/SRS estimates;

and evaluation of the accuracy and precision of the Landsat

estimates. In addition regression estimates of wheat area

and proportion ln two districts for which Landsat data was

not available are presented.

5.2.1 Classification Accuracy

Classification accuracy was determined by the test field

or training field performance matrices. The training field

classification performance for a]l local recognition counties

is given in Table 10. The test field performance is given in

Table 11 for those counties which had test fields. The

accuracy of the classification as assessed by training fields

is not significantly different from that found by measuring

test field performance. The overall classification perfor-

mances are generally 85% or higher, an indication that the

classification should result in accurate area estimates.

Since the classification performance of test (or training)

fields was used to correct for classification bias in the area

estimates, a plot was made oj" the absolute value of the bias

correction of the Landsat results and the overall classifi-

cation ac~uracy to show the )'elation between them (Figure 20).

The simple correlation between these two variables is

r = -0.80. ~he amount the Landsat estimates were adjusted
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Table 10. Classification accuracy of training fields
in Kansas.

CLASSIFICATION ACCURACY (%)

COUNTY \'/11 EAT OTlIFR OVEPAll

rpEYENt>lE 87.8 9!1.0 91.8
r,F!AI!i~J\ 84.3 87.2 86.l
rlOQTnN 93.7 87.0 8CJ.5
SHERr'1A~1 70.3 97.5 89.5
ClnlJn 85.1 81.9 83.0
nsr.ORNE 95.4 98.6 97.4
nTT A~IA 9'1.3 99.5 99.3
S~11Tn 88.3 87.0 87.2
GR!:ELEY 82.7 93.R 90.0
~'ESS ~5.7 89.8 91.3
Tr.EGO 76.8 77.1 77.1
I~AlU\CE 51. 7 97.7 90.0
~.A.RTON 95.3 83.7 87.8
~1CPHERsnN 99.5 98.8 99.1
RlISSEll 95.0 92.2 93.5
SALI NE 72.3 92.7 82.5
FINNEY 97.0 94.5 95.4
ForHl 94.9 98.8 97.4
PAn Il TON 75.3 55.5 61.9
HASKELL 96.4 98.8 97.8
HOf'(:JEHAN 86.3 79.3 81. 3
S Et-JAfU'l 97.8 98.2 98.0
STl\NTON 66.8 62.9 63.6
BArF) Er~ 96.3 99.7 98.1
IlARVEY 98.1 93.7 95.5
PRATT 99.8 94.8 97.0
STl\FFORn 94.4 98.5 96.4
Sllr~NER 93. /l <)5.3 94.3
ALLEN 94.2 94.5 94.4
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Table 11. Classification accuracy of test fields
in Kansas.

CLASSIFICATION ACCURACY (%)
COUNTY WHEAT OTHER OVERALL

SH EqHf..N 75.4 89.0 85.0
GREELEY 84.8 93.0 89.9
TREGO 86.7 81.1 82.4
SALlrJE 83.5 94.5 87.5
Fl1R[) 93.7 97.n 95.7
HM~ ILHHl 94.2 78.4 82.5
HOT'GEMM! 89.4 77.7 80.9
STANTOl\! 62.5 70.1 75.5
"ARRER 02.7 88.8 90.4
HARVEY 93.6 9E.2 95.6
PRr-,TT 92.7 95.6 93.3STi\FFOQf" 99.5 93.4 96.0
sm'NER 92.6 89.2 91.2
Jl.LLEN 95.3 80.7 90.7
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Figure 20. The relationship of the maRnitude of the
calculated bias correction to·overall
classification accuracy.
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depends primarily upon the classification accuracy, but also
on the estimated proportion of wheat in the county. The
graph clearly shows that high classification performance is
desirable to reduce the need for classification bias correc-
tion. High classification performance for each individual
cover type is also a desirable attribute.
5.2.2 Classification Bias Correction

To evaluate the consistency and usefulness of the bias
correction, a subset of Kansas counties was examined. This
was not a random sample of Kansas counties as the first
completed counties were used, but it was considered to be
representative enough and large enough to determine: (1) if
the accuracy achieved by the estimates which used training
field performance matrices to calculate the bias is different
from that achieved when test field performance matrices are
used, (2) if error matrices can be extended to non10ca1
recognition counties, and (3) whether correction for the bias
increases the accuracy of the estimates by decreasing the
difference from the SRS estimates.

To determine if the accuracy achieved by the estimates for
which training field performance matrices were used to calculate
the bias is different from that achieved when test field
performance matrices were used, the variable considered was
the difference between Landsat and SRS estimates. The test
performed was a two-sample t-test for difference in the
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means between those counties for which training fields were
used and those counties for which test fields were used
to calculate the biases. The results were nonsignificant at
the 25% significance level. It can be concluded that when
test field performance is not available, the bias can be
calculated by using the error performance matrix from the
training fields.

Nonlocal recognition counties present another problem
because there is no reference data from which a classifica-
tion performance matrix can be obtained. Since statistics
for the classification were extended from another county, it
also seemed reasonable to extend the error matrix from the
same county. To determine the validity of this extension,
differences of Landsat estimates from SRS estimates for local
counties were tested against the differences from SRS for
nonlocal counties. This was accomplished by t-tests and the
results showed that there was no difference (a = 0.25)
between the closeness of Landsat estimates to SRS for cor-
rected local counties and for corrected nonlocal counties.
It, therefore, seemed reasonable to calculate the bias cor-
rection for nonlocal recognition counties by the extension
of an error matrix.

Two t-tests were used for quantitative evaluation of
the bias correction. For local recognition counties, the
corrected estimates for proportions and areas did not differ
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from the SRS estimates at the 25% significance level. On
the other hand, the uncorrected estimates did differ from
SRS estimates at the 25% level, indicating that correction
for the bias brought Landsat estimates closer to the SRS
hectares harvested. Hence, all the local recognition coun-
ties were corrected for bias by the method previously
described.

For the nonlocal recognition counties, the bias correc-
tion also brought the Landsat estimates closer to the SRS
estimates. There was a significant difference (\1 Z 0.001)
from SRS in both proportion and area of wheat for the uncor-
rected estimates while the corrected estimates were not
significantly different from the SRS estimates even at
a = 0.25. Therefore, all nonlocal county estimates were also
corrected for classification bias.

In summary, we concluded that correcting for the bias
1S worthwhile since the difference of the corrected Landsat
estimates from the SRS estimates is nonsignificant. Cor-
rection for the bias seems to be consistent between counties
having test performance matrices and counties having only
training performance matrices and is also consistent in
extending error matrices to nonlocal counties. The same
results wp.re obtained for this part of the analysis regardless
of whether the variable considered was proportion or area
of wheat.
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5.3 Wheat Area and Proportion Estimates

The estimates of hectares and proportions from the
Landsat classifications on a county-by-county basis are pre-
sented in Table 12. Estimates for both proportion and area
of wheat are given as the uncorrected and bias-corrected
values. The values used in the statistical analysis were
always the bias-corrected estimates.
5~3.l Correlation of Landsat and USDA!SRS Estimates of Area

and Proportion of Winter Wheat
The SRS estimates for proportion and area of wheat

harvested are presented in Table 13 along with the corres-
ponding Landsat estimates and their differences. The pro-
portion and area estimates obtained from the Landsat classi-
fication are highly correlated with the USDA!SRS estimates.
The correlation between Landsat and SRS wheat harvested pro-
portions is r = 0.77 ~ 0.05 (Figure 21), while the correla-
tion between Landsat and SRS wheat area estimates is
r = 0.80 + 0.04 for harvested estimates (Figure 22). The
correlation values are presented in standard error form which
represents approximately a 68% confidence interval. These
intervals are not exactly symmetric, but the furthest bound-
ary has been presented here for simplicity [11].
5.3.2 Accuracy of Landsat Estimates

The accuracy of Landsat estimates of the area and pro-
portion of wheat can be assessed at three levels: state,
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Table 12. Uncorrected and bias-corrected Landsat estimates
of hectares and proportions of wheat in Kansas.

-LAIIIUSAT LANDSATUNCORREC TED COKREC TEl>ESTIMATES ESTrMATES
COUNTY HECTARE~ PIWPOR T ION HECTARlS P~OPUK T I[J'~

(000) I~) 10001 IW"

NORTHWEST OISTKICTCHEYENNE 'H.5 35.1 82.6 31.0
DF.CATUR 55.7 23.9 31.4 13. ~
GRAHAM 5'1.6 25.8 44.8 19.4
NORTON 10.1 30.8 50.3 22.1
RAWLINS 69.0 24.7 16.2 21.3
SHEKIDAN 71.1 H.5 53.1 B.O
SHERMAN 46.8 11.1 25.A 9.4
THOMAS 45.6 16.5 22.6 0.2

TOT AL 520.0 25.8 386.8 19.2

NORTH CENTRAL UISTl~ICTCLAY 31.5 22 .3 36.5 21.7
ClOUD 11.1 38.9 ST.5 31.2
JEWELL 44.6 19.1 19.0 B.l
MITCHEll 83.4 44.<J 6b.7 46.7
OSBORNE 76.2 H.b 80.7 34.7
on AWA 54.3 29.0 53.5 28.6
PHillIPS 44.9 19.3 17.9 7.7
REPUBLIC 6!3.8 36.9 52.6 28.2
KOOKS 81.4 ~'5.4 12.2 :n .4
SM ITH 53.1 22.'1 56.3 24.3
WASHINGTON 70.1 30.4 42.1 11l.3

TOT AL 680.2 29.9 575.0 25.0

WE ST Cf~TRAL DISTRICTGOVE 75.0 27.0 B.l 11.9
GREELEY B3.8 41.3 89.5 44.1
LANE 76.5 41.0 60.9 32.6
LOGAN 45.1 16.2 -f8.5 2H.2
NESS Sq.7 32.0 71.2 2'>.4
scon 60.2 32.1 65.4 34.9
TREGO 85.5 36.6 60.3 2~.8
WALLACE 30.3 15.4 61.3 26.0
WICHITA 58.6 31.2 58.4 31.1

TOTAL 610.7 29.5 578.6 28.0

CENTRAL OlsrRIl ..TBARTON 120.6 '53.8 107.4 41.9
DICKINSON 84.9 38.3 91.5 41.3
ELU S 117.3 50.1 108.2 4b.4
ElLSWORTH bl.3 31.9 53.3 28.6
LINCOLN 62.5 B.2 54.5 28.<)
MCPHERSON 104.2 44.9 103. 'J 44.8
MARION 69.5 28.0 66.5 27.6
RICE 10:>.3 56.4 95.2 ')1.0
KUSH l26.1 67.2 134.2 71.')
RUSSELL b7.b 29.5 5b.8 24.8
SALINE 7,;).b 40.5 82. ? 44.4

TOTAL 994.9 42.A 956.4 41.2
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